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Major strides have been taken in the regulation of lead intoxication in the general population, but
studies using genetic markers of susceptibility to environmental toxicants raise the question of
whether genes can make certain individuals more vulnerable to environmental toxins such as lead. At
least three polymorphic genes have been identified that potentially can influence the bioaccumulation
and toxicokinetics of lead in humans. The first gene to be discussed in this review is the gene coding
for 6-aminolevulinic acid dehydratase (ALAD), an enzyme of heme biosynthesis, that exists in two
polymorphic forms. The resulting isozymes have been shown to affect the blood and bone lead
levels in human populations. The effects of ALAD in lead intoxication have also been studied in
laboratory mice that differ in the genetic dose for this enzyme. The second gene reviewed here is
the vitamin D receptor (VDR) gene. The VDR is involved in calcium absorption through the gut and
into calcium-rich tissues such as bone. Recent findings suggest that VDR polymorphism may
influence the accumulation of lead in bone. Finally, the third gene to be discussed here that may
influence the absorption of lead is the hemochromatosis gene coding for the HFE protein. The
presence of mutations in the HFE gene leads to hemochromatosis in homozygotic individuals.
Because of the associations between iron and lead transport, it is possible that polymorphisms in the
HFE gene may also influence the absorption of lead, but this has not yet been studied. More studies
will be needed to define the role of these genes in lead intoxication. Key words: ALAD,
6-aminolevulinic acid dehydratase, hereditary hemochromatosis, lead accumulation, lead toxicity,
polymorphism, vitamin D receptor. - Environ Health Perspect 1 08(suppl 1):23-28 (2000).
http.//ehpnetl.niehs.nih.gov/docs/2000/suppl-1/23-28onalaja/abstract.html

Exposure to lead in the environmental and
occupational settings continues to be a serious
public health problem (1-5). At high exposure
levels, lead causes encephalopathy (6,7), kid-
ney damage (8,9), anemia (10), and toxicity to
the reproductive system (11,12). Lead expo-
sure may also induce hypertension in some
individuals (13,14). Even at lower doses, lead
produces alterations in cognitive development
in children (15-19). A safe level of lead expo-
sure has not been defined, as health risks asso-
ciated with lead are found at ever lower doses.

Pinpointing the health risks associated
with low-level exposures to lead will have
important implications with respect to its
regulation. Health-based guidelines limiting
occupational and environmental exposures to
lead have become more stringent over the past
decade and are now thought to protect most
of the population against major adverse health
effects (20-22). However, genetically suscep-
tible individuals may not be fully protected by
current regulatory standards. Better under-
standing of genetic factors that influence sus-
ceptibility to lead-induced intoxication could
have significant ramifications for public health
and intervention initiatives (23,24).

Researchers have identified a small
number of genes that induce susceptibility to
environmental toxicants, and much interest
has developed in that area. From these
strides, scientists at the National Institute
of Environmental Health Sciences have
conceived the Environmental Genome Project
to study environmental susceptibility gene

variants. It is expected that this information
will help to identify and protect susceptible
individuals from environmental hazards and
change public health policy (25).

The three genes to be discussed in this
review are the 6-aminolevulinic acid dehy-
dratase (ALAD) gene, the vitamin D receptor
(VDR) gene, and the hemochromatosis gene.
Polymorphisms of the ALAD gene have been
associated with the accumulation and distrib-
ution of lead in the blood, bone, and internal
organs in humans and animals. The VDR
gene has been implicated in the control of
calcitriol levels in serum, which normally
regulates calcium absorption and can in turn
affect lead levels. The hemochromatosis
gene, associated with a disease that leads to
excessive iron accumulation, may also influ-
ence the absorption of lead and will also be
briefly discussed.

6-Aminolevulinic Acid
Dehydratase Gene
The hematopoietic system is one of the target
organs in lead poisoning. One of the most
important mechanisms of lead toxicity is its
effect on enzymes in the heme biosynthetic
pathway. The enzymes in the biosynthetic
pathway of heme in which the effects of lead
are of the highest clinical interest are ALAD
(porphobilinogen synthase; EC 4.2.1.24) and
ferrochelatase, both of which are inhibited by
lead (26) (Figure 1). Over 99% of the lead
present in blood accumulates in erythrocytes.
Of this, over 80% is bound to ALAD (27).

It has been recognized that ALAD, the
second enzyme in the heme biosynthetic path-
way, plays a role in the pathogenesis of lead
poisoning (27). The inhibition of erythrocyte
ALAD activity is a sensitive indicator of expo-
sure to lead and has been used as a diagnostic
tool (28-30). The series of reactions leading
to heme synthesis begins with succinyl coen-
zyme A (CoA) and glycine and ends with the
insertion of an Fe2+ into a molecule of proto-
porphyrin. In the first step of heme synthesis,
the enzyme aminolevulinic acid (ALA) syn-
thase catalyses the formation of ALA from
glycine and succinyl CoA within the mito-
chondrial matrix. Lead does not significantly
inhibit ALA synthase, as demonstrated in lab-
oratory mice (31). In the second step of heme
synthesis, ALAD catalyzes the formation of
porphobilinogen from two molecules of ALA.
ALAD is the most sensitive enzyme to lead in
the heme pathway and has a high affinity for
the metal. Lead binds the enzyme's SH group,
which normally binds zinc, preventing the
binding ofALA (32). Because of its high sen-
sitivity to inhibition by lead, ALAD activity
has been used as a laboratory tool for the
detection of lead intoxication. For example, a
blood lead concentration of 15 pg/dL results
in a 50% inhibition ofALAD activity (33).

Because lead effectively inhibits ALAD
activity, resulting in accumulation of ALA in
blood and urine, urinary ALA has also been
used as a biomarker for lead exposure or a
marker of early biologic effect of lead (34).
ALAD porphyria is an autosomal recessive dis-
order resulting from a homozygous deficiency
of this enzyme. Because of an almost complete
lack ofALAD activity, patients excrete a large
amount ofALA into the urine (35). ALA has
neurotoxic activity and may contribute to
lead-induced toxicity to the brain (36).

Later in the hematopoietic cycle, the
enzyme ferrochelatase introduces iron into the
protoporphyrin molecule to form heme. Lead
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Figure 1. Lead interactions in the heme pathway. ALAS, 8-aminolevulinic acid synthase; CoA, coenzyme A.The heme
biosynthesis pathway is represented. Several enzymes in the pathway can be affected by lead; two of the most clini-
cally important are ALAD and ferrochelatase. Both these enzymes are inhibited by lead. Their activity can be mea-
sured directly or by the measurement of accumulation of their respective substrates. In the presence of lead,
&aminolevulinic acid accumulates when ALAD is inhibited. Inhibition of ferrochelatase results in the increased pro-
duction of zinc protoporphyrin.

inhibits ferrochelatase activity and therefore
prevents incorporation of iron into hemoglo-
bin. This reaction also leads to the binding of
zinc, producing zinc protoporphyrin (ZPP)
(37). The presence ofZPP has been proposed
as an indicator of recent lead intoxication and
thus can be used as a biomarker of exposure.
However, because of the abundance of hemo-
globin, even in serious cases of lead intoxica-
tion, increased ZPP is relatively harmless
because it may constitute less than 1% of the
total hemoglobin produced (37).

Human Polymorphism of
ALAD and Lead Poisoning
The gene that encodes ALAD exists in two
polymorphic forms that may modify lead tox-
icokinetics and ultimately influence individ-
ual susceptibility to lead poisoning. The
enzyme is encoded by a single gene located in
chromosome 9q34, which has two co-domi-
nant alleles, ALAD1 and ALAD2. It was first
discovered to be polymorphic in 1981 by
Petrucci and colleagues (38). Later, the
cDNA was cloned and the gene sequenced by
Wetmur and coworkers (39,40). The ALAD2
allele is the least common form, occurring in
20% of the Caucasian population and more
rarely in populations of African and Asian
descent (24,38,41). The expression of these
alleles results in three distinctly charged forms
of the isozymes. These are designated
ALAD1-1, 1-2, and 2-2, which can be identi-
fied and separated by electrophoresis. The
difference between the ALAD2 and the
ALAD1 polypeptides is a substitution of
asparagine for lysine at residue 59, resulting
from a single nucleotide change in position
177 of the coding region (24). It appears that

this substitution changes the electrical charge
of the molecule resulting in ALAD2 having a
higher affinity for lead than ALAD1.

Given the ALAD polymorphism found in
humans and the knowledge that the enzyme
is sensitive to inhibition by lead, it was rea-
sonable to believe that this polymorphism
could lead to differences in susceptibility to
lead among the human population. A small
study of 202 workers occupationally exposed
to lead showed that individuals who carried
one or two copies of the ALAD2 allele pre-
sented higher blood lead levels than individu-
als with only the ALAD1 form of the gene
(42). To further investigate this, Astrin and
colleagues determined the ALAD genotype in
over 1,000 blood samples submitted to the
New York City Lead Screening Program
(33). They found that a higher than expected
proportion of lead-exposed individuals were
either homozygous or heterozygous for the
ALAD2 allele. Furthermore, the presence of
the ALAD2 allele was associated with a 4-fold
increase in the ability to retain lead in the
blood at levels above 30 pg/dL. In compari-
son, only 8% of individuals with blood lead
levels below 30 pg/dL carried the ALAD2
allele. This finding supported the notion that
the presence of the ALAD2 allele increases
blood lead levels in exposed individuals. In a
follow-up study, 202 male workers in a
German factory occupationally exposed to
lead and a group of 1,278 environmentally
exposed children were assessed for ALAD
genotype and blood lead levels (43).
Individuals in both groups who carried one
or two copies of the ALAD2 allele had blood
lead levels 9-11 pg/dL higher than individuals
who were homozygous for ALADI. This was

a significant finding and was the first to show
a strong association between ALAD polymor-
phisms and blood lead levels in a large cohort.

Other investigations have challenged some
of these findings. Smith and colleagues con-
ducted a study of over 600 carpenters exposed
to low levels of lead (below 10 pg/dL). In con-
trast to the studies summarized above, these
investigators did not find that individuals with
the ALAD2 allele have significantly different
blood or bone lead levels than those with the
ALAD1 allele (44). These researchers argued
that the effect of the ALAD allele variants may
only come into play when other lead-binding
sites have been saturated. Therefore, the con-
tribution ofALAD variants in the resulting
bioaccumulation would only be observable at
high exposure levels (45). It was later proposed
by these investigators that hemoglobin Al may
be an important lead-binding protein that
could significantly influence the bioaccumula-
tion of lead (46). A study of lead-binding pro-
teins revealed that ALAD had the strongest
affinity for lead, whereas no lead was found
bound to hemoglobin (27,47). It appears that
the evidence is strongest in suggesting that
ALAD is the most important lead-binding
protein in blood. Furthermore, studies of lead
protein binding showed that 84% of protein-
bound lead was bound to ALAD in ALAD2
carriers, while 81% was bound to this enzyme
in the ALADI homozygotes (27). These data
also suggest that although both forms of the
enzyme bind great quantities of lead, ALAD2
may bind the metal with the highest affinity.

Evidence is mounting to suggest that
ALAD plays an important role in the bioaccu-
mulation of lead. Exactly how ALAD, and
ALAD polymorphism in particular, influences
the distribution of lead to other target organs is
still a question open for research. Two different
scenarios may be proposed. In the first,
increased binding of lead to ALAD, especially
to ALAD2, could result in increased distribu-
tion of lead to other target organs such as kid-
ney and brain. Conversely, it is possible that
ALAD could serve as a sink, keeping lead
sequestered in the blood. ALAD2 could serve
as a high-affinity substrate, retaining lead in the
blood and therefore protecting other organs. In
this case, people who have the ALAD2 allele
could experience less severe effects of lead on
kidney and brain and lesser accumulation of
lead in bone while at the same time having
higher blood lead levels than ALAD1 homo-
zygotes exposed to the same doses of lead.

To investigate the above scenarios, some
markers of the effects of lead have been studied
in human populations and their relation to
ALAD genotype interpreted. To determine
whether ALAD polymorphism can influence
lead excretion, Schwartz and co-workers (48)
studied a group of Korean lead battery manu-
facturing workers with a mean blood lead
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concentration of 25 pg/dL. Workers were
given oral doses of dimercaptosuccinic acid
(DMSA), a chelating agent used to treat lead
intoxication. The results showed that subjects
heterozygous for ALAD excreted less lead
through the urine in response to the DMSA
treatment than did the ALAD1 homozygotes
(48). It may be possible that the presence of
ALAD2 increases the retention of lead in
blood and decreases the amount of chelatable
lead. Treatment with DMSA, therefore, would
not be as effective in ALAD2 carriers. Other
investigators found that ALAD genotype may
influence kidney function, which may also
affect excretion of lead (49). In workers
exposed to low levels of lead, subclinical
kidney effects were more prominent in het-
erozygous individuals compared to ALAD1
homozygotes (44). The evidence summarized
above suggests that the ALAD2 phenotype
may enhance the detrimental effect on lead
toxicity by affecting kidney function and
decreasing the amounts of lead that are
excreted after chelation.

Other studies suggest a more complex role
for ALAD polymorphism in the toxicity of
lead and support the possibility that ALAD2
may be protective. For example, in a study of
65 lead-exposed workers with a mean blood
lead level of 27.9 pg/dL, the presence ofALA
in plasma was about 30% higher in the
ALAD1-1 subjects than in the ALAD1-2 het-
erozygous individuals (36). This is significant,
since it has been argued that the neurologic
effects of lead are due, at least in part, to the
neurotoxicity ofALA (50). These results are in
concordance with another study in a small
number of lead-exposed adolescents with the
ALAD1-2 phenotype. That investigation
showed that ALAD2 carriers performed better
in neuropsychologic tests of attention than
ALAD1 homozygotes exposed to the same lev-
els of lead (51). These data suggest that
ALAD2 may serve some protective role in
lead-induced neurotoxicity. It is not known
from these results how ALAD polymorphism
may influence the transport of lead to the tar-
get organs, particularly the brain. This is
important, since lead may also be direcdy toxic
to neurons (52). It may be that ALAD2 plays
a protective role by keeping lead bound in the
blood compartment. Supporting this notion is
the finding that ALAD1-1 subjects transfer
more lead into bone even when ALAD2 carri-
ers have higher blood lead levels (53). In addi-
tion, higher ZPP levels can be detected in
ALADI-1 individuals compared to heterozy-
gous (54). Taken together, these data begin to
suggest that even though ALAD2 carriers
accumulate higher blood lead levels, it is
ALADI-1 homozygotes who may experience
more severe effects of lead in brain, bone, and
hemopoiesis, as evidenced by ZPP levels. In
any case, it appears clear that the effects of

ALAD polymorphism on lead toxicity are
multifaceted and complex. More research will
be needed to elucidate this issue.

ALAD Polymorphism in
Laboratory Animals
Animal models of variants in the ALAD gene
may help in defining the role of the enzyme
in lead toxicity. It has been discovered that
two common laboratory strains of mice differ
in their expression of the ALAD gene.
Investigators had already shown that hepatic
ALAD enzyme activity was higher in DBA/2
mice than in the C57BL/6 strain (55,56).
Later it was shown that DBA/2 mice have two
times the dose ofALAD, due to a duplication
of the gene. In comparison, C57BL/6 mice
have only one copy of the gene and therefore
only one dose of the enzyme (57). This dupli-
cation of the ALAD gene in DBA/2 mice
explained the higher levels of enzymatic activ-
ity in these animals. Further, hybrid animals
(C57BL/6 x DBA/2) were found to have
intermediate levels ofenzyme activity (57).

We have capitalized on this genetic differ-
ence in the mouse strains to study the role of
ALAD in the accumulation and distribution
of lead. To that end, we exposed DBAI2 and
C57BL/6 mice to the same acute doses of lead
in the drinking water (23). For instance, adult
mice were exposed to 500 ppm lead acetate in
the drinking water for 14 days and blood lead
levels were determined. The animals were per-
fused in order to extract the lead-containing
blood from the internal organs. Then kidneys,
liver, and brain were extracted and assessed for
lead content. We found that the DBA/2 mice,
which have a duplication of the ALAD gene,
accumulated twice the amounts of lead in
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Figure 2. Bioaccumulation of lead in mice that differ in
the gene dose for ALAD. DBA/2 mice have two copies of
the ALAD allele, whereas C57BL/6 animals have a sin-
gle copy of the gene. Mice were given 500 ppm lead
acetate in the drinking water for 2 weeks. The DBA ani-
mals accumulated twice the amounts of lead in the
blood, kidney, and brain and 4 times the levels of lead in
liver than the C57 animals exposed to the same doses.
Values are given as micrograms per deciliter for blood
and micrograms per gram of tissue for the organs.

blood than C57BL/6 mice (Figure 2). The
DBA animals also accumulated an average of
2.4 times higher lead concentrations in the
kidneys, 4.1 times the lead in the liver, and
2.5 times the levels in brain as the C57 mice
exposed to the same doses. In other experi-
ments we showed that hybrid mice presented
intermediate levels of lead in the blood and
target organs when exposed to the same levels
as the purebred animals (23).

Interestingly, ZPP levels increased with
increasing lead exposure in C57 mice, sug-
gesting that the hematopoietic system of these
mice was highly sensitive and affected by lead
exposure even when these animals retained
relatively low levels of lead in the blood
(Figure 3). This may be due to the lower
amounts ofALAD in the blood of these ani-
mals, which would allow for lead unbound to
ALAD to affect the production of ZPP. In
contrast, in the DBA mice the situation is
reversed. The higher concentration ofALAD
in the blood provides a high-affinity substrate
for lead, reducing its effect on the production
of ZPP. These findings compare well to the
observations made in humans (54) and may
suggest that these mouse strains can be used
as a model for studying the role ofALAD in
lead toxicity. However, it must be noted that
the genetic difference in these mice is due to a
duplication of the gene rather than a poly-
morphic form as seen in humans. Developing
transgenic mice with the ALAD2 gene may be
a more accurate model of the human system.

It appears from these results that the
presence ofmore ALAD in the blood facilitates
the binding of lead by increasing the substrate
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Figure 3. Blood lead levels plotted against ZPP levels in
DBA and C57 mice. Animals were given doses of 0, 250,
500, and 1000 ppm of lead in the drinking water for 14
days (4 animals in each dose group). ZPP levels in DBA
animals remained constant even when blood lead levels
increased to over 100 pg/dL. In contrast, ZPP increased
sharply with increasing lead dose, while blood lead lev-
els remained relatively low in C57 mice. Data adapted
from Claudio et al. (23).
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to which the metal can bind. This is consistent
with the estimations of high proportions of
lead in blood bound to ALAD (27,58). This
increased binding of lead to ALAD may then
facilitate the distribution of lead to other target
organs in the DBA/2 animals.

Although this mouse model differs from
the human situation in that it involves a gene
duplication rather than a mutation, we have
used it to study the role ofALAD in lead-
induced toxicity. Our findings suggest that
ALAD plays an important role in the bioac-
cumulation of lead in tissues and therefore
may play a pivotal role in lead's toxicokinetics.
Both in animals and in humans, ALAD,
together with lead exposure level appears to
be a factor in the accumulation and distribu-
tion of lead, which in turn affects the patho-
logic effects that will be exerted by the metal.
The rapid and accurate determination of the
ALAD genotype permits the screening of
populations to identify individuals who are
genetically susceptible to higher blood lead
levels (30,58). Further research is needed to
understand the role of this enzyme in lead
toxicity in order to develop any screening
strategies for risk assessment in populations of
individuals exposed to lead.

Polymorphism in the
Vitamin D Receptor Gene
and Lead Intoxication
The Role ofVitamin D in Mineral
Transport
Sunlight produces the activation of vitamin D
in the skin to 1ao25(0H)2D3 (calcitriol), the
blood-borne hormonal form of vitamin D
that is involved in mineral absorption. The
role of vitamin D in calcium and lead absorp-
tion is illustrated in Figure 4. The vitamin D
hormone circulating in the blood can then
bind to VDRs in the nucleus of intestinal
cells as well as in kidney and bone (26).
There, the high-affinity VDR appears to acti-
vate genes that encode calcium-binding pro-
teins such as calbindin-D, which is involved
in intestinal calcium transport (59). Increases
in the production of calbindin-D in the
intestinal cells result in increased absorption
of calcium through the gut.

Because of their similar biochemical nature
as divalent cations, calcium and lead often
interact in the same biologic systems. For that
reason, many of the cellular effects of lead are
thought to be due to its effects on the normal
function of calcium-dependent systems (60).

Figure 4. Possible role of the vitamin D receptor in the absorption of calcium and lead. The blood-borne form of vita-
min D (lal,25(0H)2D3) activates the vitamin D receptor (D3), increasing the production of calcium-binding proteins.
These proteins increase the dietary absorption of calcium in intestinal cells. It is possible that this mechanism may
also influence the absorption of lead into blood and bone. Data adapted from Deviin (26).

Lead and calcium also modify each other's
absorption. For example, dietary calcium defi-
ciency contributes to increased intestinal lead
absorption and retention (61-63). In addition,
calbindin-D binds lead with high affinity and
may be implicated in its transport (64). These
data suggest that calcium and lead are cotrans-
ported through the gut into the blood, and
from there the two metals may be codistrib-
uted to calcium-rich tissues such as the bone
(65). Through this mechanism it is possible to
explain why there is increased lead absorption
during dietary calcium deficiency. Calcium
deficiency increases the production of vitamin
D hormone and therefore the synthesis of
calcium-binding proteins. In the presence of
lead, proteins such as calbindin-D will bind
this metal, increasing its transport (66). In
addition, intoxication with lead can produce
decreased serum calcitriol, suggesting that lead
impairs hormonal synthesis in the kidney (67).
In this way lead may also interfere with cal-
cium absorption (68). Together, these data
show that the interactions between lead, cal-
cium, and calcitriol are complex and induce
modifications ofmineral and vitamin levels.

Role ofYVitanin D Receptor
PolymoTphism in Lead Intoxication
The cellular actions of hormonal vitamin D
depend on its interaction with the nuclear
VDR that regulates the production of cal-
cium-binding proteins. These, in turn, may
function in the mineralization and resorption
of bone. The VDR exists in several polymor-
phic forms in humans (69). This polymor-
phism of common allelic variants can be used
to predict differences in bone density and it is
said to account for up to 75% of the total
genetic effect on bone density, as first deter-
mined in a study of healthy monozygotic and
dizygotic twins (70). However, some debate
persists on this issue (71). For example, a
study of VDR alleles in prepubertal girls
showed that genotype had an effect on growth
rather than bone density (72). Nevertheless, it
is possible that the effect ofVDR on bone
density is more detectable with age.

At least three genotypes of the VDR gene
have been identified. These are defined by the
restriction fragment length polymorphisms
(RFLPs) resulting from cutting the DNA
with three different restriction enzymes, Taq
I (73), Fok I (74), and the most widely stud-
ied, BsmI (75). These RFLPs have been cor-
related with bone mineral density and
circulating levels of osteocalcin (69,76,77).

The polymorphism defined by the
restriction enzyme BsmI results in three geno-
types denoted bb when the restriction site is
present, BB when it is absent, and Bb when
the two alleles are present. The BB genotype
has been associated with lower bone mineral
densities, particularly in women (71,75,78)
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and may play a role in the development of
osteoporosis and rheumatoid arthritis (73).
Women expressing the BB genotype may have
2-10% lower bone mineral densities than
those with the bb form of the gene (79).
Similarly, mineral bone densities have been
found to be 7% lower in men homozygotic for
BB compared with bb or heterozygous (80).

Because of these polymorphisms and their
effect on bone mineralization, it can be
expected that these genetic variants may also
influence lead accumulation in bone. Lead
accumulates in bone at different rates through
the life cycle, showing lower rates of deposi-
tion in the earlier years and increasing in
middle-aged and elderly subjects (81,82). The
first study to address the role ofVDR geno-
type on bone lead accumulation has been con-
ducted. Using X-ray fluorescence to determine
the levels of lead in bone in a group of lead-
exposed workers, investigators found that
bone lead content is higher in individuals with
the BB genotype, intermediate in heterozy-
gous and lower in bb homozygous (83).
These observations suggest that VDR poly-
morphism may not only affect bone mineral
density but may also influence the accumula-
tion of lead in bone. Further investigation on
the role ofVDR will be necessary, but the evi-
dence suggests that it may play a role in sus-
ceptibility to lead bioaccumulation. The
results of this study show that the influence of
VDR on accumulation of lead in bone was
too high in BB individuals to be explained by
bone mineral alone. It will be interesting to
see how this polymorphism may affect bone
lead levels in other populations.

Possible Role ofthe Hemochomatosis
Gene in Lead Intoxication
Hemochromatosis is a disease in which
excessive quantities of iron are deposited in
many internal organs, particularly the liver,
leading to progressive tissue damage. The dis-
ease has been estimated to occur in 1 out of
every 300 Caucasians (84), although genotyp-
ing studies estimated that the incidence may be
1 in 200 (85). The disease state appears most
commonly at the ages of 30-40 years and is
treated by periodic extraction of blood from
the patient, thus reducing the iron overload.
Iron chelation may also be recommended.
A gene localized in chromosome 6p21.3

has been identified to code for a defective pro-
tein involved in hemochromatosis. The gene
corresponds to the major histocompatibility
Class I-like family and codes for a protein des-
ignated HFE (86). Two missense mutations
in this gene have been identified that lead to
hemochromatosis in homozygotic patients; the
most common of these mutations is designated
C282Y. The mutations are present in over
80% of patients with the disease (87). In a
study conducted in New Zealand, 38% of the

general population is heterozygous for either
one of the mutations (85).

An important association has been made
between iron deficiency and increased lead
absorption and toxicity (88). For example, a
study conducted in two-year-old children
showed that iron-deficient children did not
recover as well from lead intoxication after
undergoing chelation therapy and failed to
achieve developmental landmarks compared
with children also exposed to lead but who had
normal levels of iron (89). This is compelling
data that point to the strong influence of iron
status not only in the accumulation of lead but
also in its toxicity. Ironically, hemochromatosis
patients may be at risk of increased lead
absorption as if they were iron deficient. It has
been found that homozygous individuals who
have the disease accumulate more lead than do
those who do not have the gene. Heterozygous
individuals had intermediate blood lead levels
(90). This is strong evidence to suggest that
the hemochromatosis gene may induce
susceptibility to increased lead absorption.

At least two mechanisms for the increased
absorption of lead in hemochromatosis gene
carriers can be postulated. Since the discovery
of the HFE gene in hemochromatosis patients,
much has been learned about its function in
iron homeostasis. It appears that HFE binds to
the transferrin receptor, reducing its ability to
bind to transferrin and thus decreasing the
absorption of iron in the gut in normal indi-
viduals (87,91). Hemochromatosis patients
lack a functional HFE protein due to muta-
tions in the gene. This lack of HFE increases
the expression of transferrin receptors in the
intestine and absorption of iron increases as if
the patient were iron deficient (92).

Another mechanism for the role of HFE
mutations in the development of hemochro-
matosis may also be involved. It was found
recently that knockout mice that lack the gene
for HFE have increased expression of the diva-
lent metal transporter (DMT-1) protein in the
duodenum. These mice show an increase in
mRNA for DMT of over 7-fold (93). Support
for the role ofDMT comes also from studies
in humans. Biopsies of the duodenum of
hereditary hemochromatosis patients revealed
a 3-fold increase in mRNA levels above those
found in biopsies of control patients (94).
These findings suggest that the HFE protein
may influence the expression of other metal
transporters such as DMT in the gut and
modify the absorption of other metals in addi-
tion to iron. The findings also raise the ques-
tion of whether carriers of the HFE mutations
may also induce differential absorption of met-
als. For example, individuals heterozygous for
either of the HFE mutations show increased
serum iron and transferrin saturation levels
(85). Given that these mutations are relatively
common, occurring in over one-third of the

Caucasian population, it may be interesting to
determine how these mutations may influence
absorption to other metals. Information on the
hemochromatosis gene is very new, since the
HFE gene was discovered only 3 years ago.
Studies on how this gene may influence lead
absorption have not been reported.

In conclusion, the influence of genes on
lead intoxication is still being defined. The
most well-known gene in this regard is the
ALAD gene, which has been highly studied in
human populations and animal models. This
genetic polymorphism appears to have a strong
influence on lead absorption and bioaccumula-
tion, but its role in affecting neurotoxicity of
lead is still unclear. The roles of the VDR poly-
morphisms and the HFE gene are even less
clear. Both are involved in the transport and
bioaccumulation of other divalent cations
through the intestinal tract, and for that reason
may also influence the absorption of lead. More
studies will be needed to define their roles.
However, it is dear that more genetic determi-
nants will be discovered to be associated with
susceptibility to lead intoxication and to other
environmentally induced ailments.
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